English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 367-375 DOI: 10.7536/PC230718 前一篇   后一篇

• 综述 •

MOFs在催化有机分子转化中的应用

李希臣1,2, 李政1,2, 彭灿1,2, 钱陈1,2, 韩雨霏1,2, 张涛1,2,*()   

  1. 1 南京医科大学药学院核药学系 南京 211166
    2 南京医科大学核医药临床转化中心 南京 210029
  • 收稿日期:2023-07-18 修回日期:2023-09-29 出版日期:2024-03-24 发布日期:2024-02-26
  • 作者简介:

    张涛 理学博士,2017年于南京大学获得博士学位。之后在美国北卡罗莱纳大学作为博士后从事生物医学工程研究。2021年3月起作为高层次人才引进到南京医科大学开展独立科学研究工作,主要从事临床重大疾病的化学生物学基础及分子影像学指导下的精准诊疗研究。

  • 基金资助:
    国家自然科学基金项目(12275135); 江苏省高校自然科学研究项目(21KJB350015); 南京医科大学引进人才科研启动基金(NMUR20210003); 南京医科大学内涵建设重点项目和南京医科大学科技发展基金(NMUB20210014); 江苏省高校自然科学研究项目(22KJB350008)

Application of MOFs in Catalytic Conversion of Organic Molecules

Xichen Li1,2, Zheng Li1,2, Can Peng1,2, Chen Qian1,2, Yufei Han1,2, Tao Zhang1,2()   

  1. 1 Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
    2 Nuclear Medicine Clinical Transformation Center, Nanjing Medical University, Nanjing 210029, China
  • Received:2023-07-18 Revised:2023-09-29 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: zhangtaocjh@njmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12275135); Jiangsu Province University Natural Science Research Project(21KJB350015); Nanjing Medical University Talent Introduction Research Start-up Fund(NMUR20210003); Key Project of Connotation Construction of Nanjing Medical University and Science and Technology Development Fund of Nanjing Medical University(NMUB20210014); Jiangsu Province University Natural Science Research Project(22KJB350008)

金属有机框架化合物(MOF),又称多孔性配位聚合物,是有机配体与金属离子自组装而成的一类新型有机-无机杂化多孔材料,是纳米材料的重要组成部分。与其他多孔材料相比,MOFs具有较大的比表面积、高的孔隙率以及结构和性质可调等特性,使其在非均相催化领域具有良好的应用前景。本文首先对MOFs催化的背景进行简述,然后对近年来报道的MOFs用于有机分子催化转化反应的进展进行了综述及展望,以期为MOFs催化有机反应的设计和开发提供参考。

Metal-organic framework compounds (MOF), also known as porous coordination polymers, are a new type of organic-inorganic hybrid porous materials which are self-assembled from organic ligands and metal ions, and are an important part of nanomaterials. Compared to other porous materials, MOFs have a large surface area, high porosity and adjustable structure and properties, making them have a good application prospect in heterogeneous catalysis. In this paper, the background of MOFs catalysis is briefly reviewed, followed by a review and prospect of the recent progress of MOFs in catalytic conversion reactions of organic molecules, in order to provide a reference for the design and development of organic reactions catalyzed by MOFs.

Contents

1 Introduction

2 Knoevenagel Condensation catalyzed by MOFs

3 Suzuki-Miyaura Reaction catalyzed by MOFs

4 Mizoroki-Heck Reaction catalyzed by MOFs

5 Aldol Condensation catalyzed by MOFs

6 A3-Coupling Reaction catalyzed by MOFs

7 Cycloaddition of CO2 catalyzed by MOFs

8 Oxidation and reduction of unsaturated hydrocarbons catalyzed by MOFs

9 Conclusion and outlook

()
图1 Knoevenagel缩合反应示意图
Fig. 1 Diagram of Knoevenagel condensation reaction
图2 UiO-66及其修饰改造示意图[13]
Fig. 2 Diagram of UiO-66 and its modifications[13]
图3 Suzuki-Miyaura反应示意图
Fig. 3 Diagram of Suzuki-Miyaura reaction
图4 UiO-66(L3)示意图[21]
Fig. 4 Diagram of UiO-66 (L3) [21]
图5 Mizoroki-Heck反应示意图
Fig. 5 Diagram of Mizoroki-Heck reaction
图6 Pd@Co3O4示意图[31]
Fig. 6 Diagram of Pd@Co3O4 [31]
图7 Aldol缩合反应示意图
Fig. 7 Diagram of Aldol condensation reaction
图8 A3-Coupling反应示意图
Fig. 8 Diagram of A3-Coupling reaction
图9 Au/MOF-199示意图[44]
Fig. 9 Diagram of Au/MOF-199[44]
图10 二氧化碳与环氧化合物成环反应示意图
Fig. 10 Diagram of the ring-forming reaction of carbon dioxide and epoxy compounds
图11 ZnO@NPC-Ox-700示意图[51]
Fig. 11 Diagram of ZnO@NPC-Ox-700[51]
图12 不饱和烃的氧化示意图
Fig. 12 Diagram of oxidation of unsaturated hydrocarbons
图13 Zn1Co1-ZIF示意图[55]
Fig. 13 Diagram of Zn1Co1-ZIF[55]
图14 不饱和烃的还原示意图
Fig. 14 Diagram of the reduction of unsaturated hydrocarbons
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): e1230444.
[2]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705.

doi: 10.1038/nature01650    
[3]
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38(5): 1450.

doi: 10.1039/b807080f     URL    
[4]
Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116(3): 1151.

doi: 10.1021/ja00082a055     URL    
[5]
Uchikura T, Tsubono K, Hara Y, Akiyama T. J. Org. Chem., 2022, 87(22): 15499.

doi: 10.1021/acs.joc.2c02032     URL    
[6]
Patel D, Trivedi K A, Srivastava H, Kane S R, Modi C K. Inorg. Chem. Commun., 2022, 136: 109175.

doi: 10.1016/j.inoche.2021.109175     URL    
[7]
Chirik P J. Acc. Chem. Res., 2015, 48(6): 1687.

doi: 10.1021/acs.accounts.5b00134     URL    
[8]
Li Q Y, Ji S F, Hao Z M. Prog. Chem., 2012, 24: 1506.
(李庆远, 季生福, 郝志谋. 化学进展, 2012, 24: 1506.).
[9]
Liu B, Jie S Y, Li B G. Prog. Chem., 2013, 25: 36.
(刘兵, 介素云, 李伯耿. 化学进展, 2012, 25: 36.).
[10]
Gao F, Yan R H, Shu Y, Cao Q B, Zhang L. RSC Adv., 2022, 12(16): 10114.

doi: 10.1039/D2RA01175A     URL    
[11]
Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J. Catal. Sci. Technol., 2013, 3(2): 500.

doi: 10.1039/C2CY20586F     URL    
[12]
Opanasenko M, Dhakshinamoorthy A, Čejka J, Garcia H. ChemCatChem, 2013, 5(6): 1553.

doi: 10.1002/cctc.v5.6     URL    
[13]
Luan Y, Qi Y, Gao H Y, Andriamitantsoa R S, Zheng N N, Wang G. J. Mater. Chem. A, 2015, 3(33): 17320.

doi: 10.1039/C5TA00816F     URL    
[14]
Hwang Y, Hong D Y, Chang J S, Jhung S, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47(22): 4144.

doi: 10.1002/anie.v47:22     URL    
[15]
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469.

doi: 10.1126/science.1067208     URL    
[16]
Sen R, Saha D, Koner S. Chem., 2012, 18(19): 5979.
[17]
Zhang Y, Wang Y X, Liu L, Wei N, Gao M L, Zhao D, Han Z B. Inorg. Chem., 2018, 57(4): 2193.

doi: 10.1021/acs.inorgchem.7b03084     URL    
[18]
He Z M, Zhao X, Pan X B, Li Y Y, Wang X X, Xu H T, Xu Z L. RSC Adv., 2019, 9(43): 25170.

doi: 10.1039/C9RA04499J     URL    
[19]
Jiang W L, Fu Q J, Yao B J, Ding L G, Liu C X, Dong Y B. ACS Appl. Mater. Interfaces, 2017, 9(41): 36438.

doi: 10.1021/acsami.7b12166     URL    
[20]
Fihri A, Bouhrara M, Nekoueishahraki B, Basset J M, Polshettiwar V. Chem. Soc. Rev., 2011, 40(10): 5181.

doi: 10.1039/c1cs15079k     URL    
[21]
Elumalai P, Mamlouk H, Yiming W, Feng L, Yuan S, Zhou H C, Madrahimov S T. ACS Appl. Mater. Interfaces, 2018, 10(48): 41431.

doi: 10.1021/acsami.8b16136     URL    
[22]
Ma R, Yang P B, Ma Y, Bian F L. ChemCatChem, 2018, 10(6): 1446.

doi: 10.1002/cctc.v10.6     URL    
[23]
Xiong G, Chen X L, You L X, Ren B Y, Ding F, Dragutan I, Dragutan V, Sun Y G. J. Catal., 2018, 361: 116.

doi: 10.1016/j.jcat.2018.02.026     URL    
[24]
Chen W M, Cai P Y, Elumalai P, Zhang P, Feng L, Al-Rawashdeh M, Madrahimov S T, Zhou H C. ACS Appl. Mater. Interfaces, 2021, 13(44): 51849.

doi: 10.1021/acsami.1c03607     URL    
[25]
Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn., 1971, 44(2): 581.

doi: 10.1246/bcsj.44.581     URL    
[26]
Heck R F, Nolley J P Jr. J. Org. Chem., 1972, 37(14): 2320.

doi: 10.1021/jo00979a024     URL    
[27]
Wang M L, Xu H, Li H Y, Ma B, Wang Z Y, Wang X, Dai H X. Org. Lett., 2021, 23: 2147.

doi: 10.1021/acs.orglett.1c00296     URL    
[28]
Phan N  , Van Der Sluys M, Jones C. Adv. Synth. Catal., 2006, 348(6): 609.

doi: 10.1002/(ISSN)1615-4169     URL    
[29]
Shaikh M N, Aziz M A, Helal A, Kalanthoden A N, Yamani Z H. ChemistrySelect, 2017, 2(28): 9052.

doi: 10.1002/slct.201701270     URL    
[30]
Zhang H, Zhou M H, Xiong L F, He Z D, Wang T Q, Xu Y, Huang K. J. Phys. Chem. C, 2017, 121(23): 12771.

doi: 10.1021/acs.jpcc.7b02425     URL    
[31]
Zhou A W, Guo R M, Zhou J, Dou Y B, Chen Y, Li J R. ACS Sustainable Chem. Eng., 2018, 6(2): 2103.

doi: 10.1021/acssuschemeng.7b03525     URL    
[32]
Wei Y L, Li Y, Chen Y Q, Dong Y, Yao J J, Han X Y, Dong Y B. Inorg. Chem., 2018, 57(8): 4379.

doi: 10.1021/acs.inorgchem.7b03271     URL    
[33]
Yuan N, Pascanu V, Huang Z H, Valiente A, Heidenreich N, Leubner S, Inge A K, Gaar J, Stock N, Persson I, Martín-Matute B, Zou X D. J. Am. Chem. Soc., 2018, 140(26): 8206.

doi: 10.1021/jacs.8b03505     URL    
[34]
Li X H, Tjiptoputro A K, Ding J, Xue J M, Zhu Y H. Catal. Today, 2017, 279: 77.

doi: 10.1016/j.cattod.2016.03.044     URL    
[35]
Ishida T, Koga H, Okumura M, Haruta M. Chem. Rec., 2016, 16(5): 2278.

doi: 10.1002/tcr.v16.5     URL    
[36]
Yazdi A, Abo Markeb A, Garzón-Tovar L, Patarroyo J, Moral-Vico J, Alonso A, Sánchez A, Bastus N, Imaz I, Font X, Puntes V, Maspoch D. J. Mater. Chem. A, 2017, 5(27): 13966.

doi: 10.1039/C7TA03006A     URL    
[37]
Muir S S, Yao X D. Int. J. Hydrog. Energy, 2011, 36(10): 5983.
[38]
Rossin A, Peruzzini M. Chem. Rev., 2016, 116(15): 8848.

doi: 10.1021/acs.chemrev.6b00043     URL    
[39]
Saha D, Maity T, Das S, Koner S. Dalton Trans., 2013, 42(38): 13912.

doi: 10.1039/c3dt51509e     URL    
[40]
Maity T, Saha D, Das S, Koner S. Eur. J. Inorg. Chem., 2012, 2012(30): 4914.
[41]
Nasrollahzadeh M, Sajjadi M, Ghorbannezhad F, Sajadi S M. Chem. Rec., 2018, 18(10): 1409.

doi: 10.1002/tcr.v18.10     URL    
[42]
Kassymova M, de Mahieu A, Chaemchuen S, Demeyere P, Mousavi B, Zhuiykov S, Yusubov M S, Verpoort F. Catal. Sci. Technol., 2018, 8(16): 4129.

doi: 10.1039/C8CY00662H     URL    
[43]
Li D, Dai X P, Zhang X, Zhuo H Y, Jiang Y, Yu Y B, Zhang P F, Huang X L, Wang H. J. Catal., 2017, 348: 276.

doi: 10.1016/j.jcat.2017.02.013     URL    
[44]
Jiang Y, Zhang X, Dai X P, Zhang W, Sheng Q, Zhuo H Y, Xiao Y, Wang H. Nano Res., 2017, 10(3): 876.

doi: 10.1007/s12274-016-1341-1     URL    
[45]
Yang Q H, Jiang H L. Small Meth., 2018, 2(12): 1800216.

doi: 10.1002/smtd.v2.12     URL    
[46]
Liu L L, Tai X S, Zhou X J, Liu L J. Chem. Res. Chin. Univ., 2023, 15(6): 8263.
[47]
Chen M, Liu X Y, Yang Y Y, Xu W, Chen K C, Luo R C. ACS Appl. Mater. Interfaces, 2023, 15(6): 8263.

doi: 10.1021/acsami.2c22824     URL    
[48]
Dibenedetto A, Nocito F. ChemSusChem, 2020, 13(23): 6219.

doi: 10.1002/cssc.v13.23     URL    
[49]
Liu X Y, Yang Y Y, Chen M, Xu W, Chen K C, Luo R C. ACS Appl. Mater. Interfaces, 2023, 15(1): 1085.

doi: 10.1021/acsami.2c18283     URL    
[50]
Kessaratikoon T, Theerathanagorn T, Crespy D, D’Elia V. J. Org. Chem., 2023, 88(8): 4894.

doi: 10.1021/acs.joc.2c02447     URL    
[51]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B. Angew. Chem. Int. Ed., 2019, 58(2): 577.

doi: 10.1002/anie.v58.2     URL    
[52]
Ding M L, Chen S, Liu X Q, Sun L B, Lu J L, Jiang H L. ChemSusChem, 2017, 10(9): 1898.

doi: 10.1002/cssc.v10.9     URL    
[53]
Sun L L, Yun Y P, Sheng H T, Du Y X, Ding Y M, Wu P, Li P, Zhu M Z. J. Mater. Chem. A, 2018, 6(31): 15371.

doi: 10.1039/C8TA04667K     URL    
[54]
Wu W Q, Jiang H F. Acc. Chem. Res., 2012, 45(10): 1736.

doi: 10.1021/ar3000508     URL    
[55]
Brown K, Zolezzi S, Aguirre P, Venegas-Yazigi D, Paredes-García V, Baggio R, Novak M A, Spodine E. Dalton Trans., 2009,(8): 1422.
[56]
Hui J F, Chu H M, Zhang W L, Shen Y, Chen W Z, Hu Y, Liu W, Gao C, Guo S H, Xiao G W, Li S, Fu Y, Fan D D, Zhang W N, Huo F W. Nanoscale, 2018, 10(18): 8772.

doi: 10.1039/C8NR01336E     URL    
[57]
Zhang P, Chen C J, Kang X C, Zhang L J, Wu C Y, Zhang J L, Han B X. Chem. Sci., 2018, 9(5): 1339.

doi: 10.1039/C7SC04269H     URL    
[58]
Limvorapitux R, Chou L Y, Young A P, Tsung C K, Nguyen S T. ACS Catal., 2017, 7(10): 6691.

doi: 10.1021/acscatal.6b03632     URL    
[59]
Fan S, Dong W J, Huang X B, Gao H Y, Wang J J, Jin Z K, Tang J, Wang G. ACS Catal., 2017, 7(1): 243.

doi: 10.1021/acscatal.6b02614     URL    
[60]
Lin L, Liu H O, Zhang X F. Appl. Surf. Sci., 2018, 433: 602.

doi: 10.1016/j.apsusc.2017.10.047     URL    
[61]
Hu M Z, Zhao S, Liu S J, Chen C, Chen W X, Zhu W, Liang C, Cheong W C, Wang Y, Yu Y, Peng Q, Zhou K B, Li J, Li Y D. Adv. Mater., 2018, 30(33): 1801878.

doi: 10.1002/adma.v30.33     URL    
[62]
Ding S, Zhang C, Liu Y, Jiang H, Xing W, Chen R. J. Ind. Eng. Chem., 2017, 46: 258.
[63]
Nakatsuka K, Yoshii T, Kuwahara Y, Mori K, Yamashita H. Chem., 2018, 24(4): 898.
[1] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[2] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[3] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[4] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[5] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[6] 郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(2/3): 232-243.
[7] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[8] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[9] 庄长福, 刘建路, 戴文, 吴中平, 王瑛, 高爽*. 卟啉金属有机骨架材料的合成及其在催化反应[J]. 化学进展, 2014, 26(0203): 277-292.
[10] 刘兵, 介素云*, 李伯耿*. 金属有机框架化合物在非均相催化反应中的应用[J]. 化学进展, 2013, 25(01): 36-45.
[11] 林祥钦, 李国霞. 纳米孔洞制备与单分子检测[J]. 化学进展, 2011, 23(4): 800-809.
[12] 汪海明,王正,丁奎岭. 手性自负载催化剂研究新进展[J]. 化学进展, 2010, 22(07): 1471-1481.
[13] 鹿萍,卢介,游欢欢,石品,董坚. 高分子负载钯金属的非均相催化C-C偶联反应*[J]. 化学进展, 2009, 21(0708): 1434-1441.
[14] 徐泽辉,顾超然,王佩琳. 非均相催化烯烃交叉复分解反应[J]. 化学进展, 2009, 21(04): 784-790.
[15] 李,珩,温永强,杨青林,宋延林. 有机分子修饰硅表面*[J]. 化学进展, 2008, 20(12): 1964-1971.
阅读次数
全文


摘要

MOFs在催化有机分子转化中的应用